Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan.

Identifieur interne : 001078 ( Main/Exploration ); précédent : 001077; suivant : 001079

A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan.

Auteurs : Ruiqin Zhong [États-Unis] ; Dongtao Cui [États-Unis] ; Zheng-Hua Ye [États-Unis]

Source :

RBID : pubmed:29617384

Descripteurs français

English descriptors

Abstract

Wood represents the most abundant biomass produced by plants and one of its major components is acetyl xylan. Acetylation in xylan can occur at O-2 or O-3 of a xylosyl residue, at both O-2 and O-3 of a xylosyl residue, and at O-3 of a xylosyl residue substituted at O-2 with glucuronic acid. Acetyltransferases responsible for the regiospecific acetylation of xylan in tree species have not yet been characterized. Here we report the biochemical characterization of twelve Populus trichocarpa DUF231-containing proteins, named PtrXOATs, for their roles in the regiospecific acetylation of xylan. The PtrXOAT genes were found to be differentially expressed in Populus organs and among them, PtrXOAT1, PtrXOAT2, PtrXOAT9 and PtrXOAT10 exhibited the highest level of expression in stems undergoing wood formation. Activity assays of recombinant proteins demonstrated that all twelve PtrXOAT proteins were able to transfer acetyl groups from acetyl CoA onto a xylohexaose acceptor with PtrXOAT1, PtrXOAT2, PtrXOAT3, PtrXOAT11 and PtrXOAT12 having the highest activity. Structural analysis of the PtrXOAT-catalyzed reaction products using 1H NMR spectroscopy revealed that PtrXOAT1, PtrXAOT2 and PtrXOAT3 mediated 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation of xylosyl residues and PtrXOAT11 and PtrXOAT12 only catalyzed 2-O- and 3-O-monoacetylation of xylosyl residues. Of the twelve PtrXOATs, only PtrXOAT9 and PtrXOAT10 were capable of transferring acetyl groups onto the O-3 position of 2-O-glucuronic acid-substituted xylosyl residues. Furthermore, when expressed in the Arabidopsis eskimo1 mutant, PtrXOAT1, PtrXAOT2 and PtrXOAT3 were able to rescue the defects in xylan acetylation. Together, these results demonstrate that the twelve PtrXOATs are acetyltransferases with different roles in xylan acetylation in P. trichocarpa.

DOI: 10.1371/journal.pone.0194532
PubMed: 29617384
PubMed Central: PMC5884507


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan.</title>
<author>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of Georgia, Athens, GA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29617384</idno>
<idno type="pmid">29617384</idno>
<idno type="doi">10.1371/journal.pone.0194532</idno>
<idno type="pmc">PMC5884507</idno>
<idno type="wicri:Area/Main/Corpus">000E94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E94</idno>
<idno type="wicri:Area/Main/Curation">000E94</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E94</idno>
<idno type="wicri:Area/Main/Exploration">000E94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan.</title>
<author>
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of Georgia, Athens, GA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Biology, University of Georgia, Athens, GA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Acetyltransferases (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Nuclear Magnetic Resonance, Biomolecular (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Proteins (physiology)</term>
<term>Populus (enzymology)</term>
<term>Populus (metabolism)</term>
<term>Wood (chemistry)</term>
<term>Wood (metabolism)</term>
<term>Xylans (chemistry)</term>
<term>Xylans (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acetyltransferases (MeSH)</term>
<term>Acétylation (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Bois (composition chimique)</term>
<term>Bois (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines végétales (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Résonance magnétique nucléaire biomoléculaire (MeSH)</term>
<term>Xylanes (composition chimique)</term>
<term>Xylanes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Acetyltransferases</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Bois</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Gene Expression Regulation, Plant</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acetyltransferases</term>
<term>Acétylation</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Résonance magnétique nucléaire biomoléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood represents the most abundant biomass produced by plants and one of its major components is acetyl xylan. Acetylation in xylan can occur at O-2 or O-3 of a xylosyl residue, at both O-2 and O-3 of a xylosyl residue, and at O-3 of a xylosyl residue substituted at O-2 with glucuronic acid. Acetyltransferases responsible for the regiospecific acetylation of xylan in tree species have not yet been characterized. Here we report the biochemical characterization of twelve Populus trichocarpa DUF231-containing proteins, named PtrXOATs, for their roles in the regiospecific acetylation of xylan. The PtrXOAT genes were found to be differentially expressed in Populus organs and among them, PtrXOAT1, PtrXOAT2, PtrXOAT9 and PtrXOAT10 exhibited the highest level of expression in stems undergoing wood formation. Activity assays of recombinant proteins demonstrated that all twelve PtrXOAT proteins were able to transfer acetyl groups from acetyl CoA onto a xylohexaose acceptor with PtrXOAT1, PtrXOAT2, PtrXOAT3, PtrXOAT11 and PtrXOAT12 having the highest activity. Structural analysis of the PtrXOAT-catalyzed reaction products using 1H NMR spectroscopy revealed that PtrXOAT1, PtrXAOT2 and PtrXOAT3 mediated 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation of xylosyl residues and PtrXOAT11 and PtrXOAT12 only catalyzed 2-O- and 3-O-monoacetylation of xylosyl residues. Of the twelve PtrXOATs, only PtrXOAT9 and PtrXOAT10 were capable of transferring acetyl groups onto the O-3 position of 2-O-glucuronic acid-substituted xylosyl residues. Furthermore, when expressed in the Arabidopsis eskimo1 mutant, PtrXOAT1, PtrXAOT2 and PtrXOAT3 were able to rescue the defects in xylan acetylation. Together, these results demonstrate that the twelve PtrXOATs are acetyltransferases with different roles in xylan acetylation in P. trichocarpa.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29617384</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan.</ArticleTitle>
<Pagination>
<MedlinePgn>e0194532</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0194532</ELocationID>
<Abstract>
<AbstractText>Wood represents the most abundant biomass produced by plants and one of its major components is acetyl xylan. Acetylation in xylan can occur at O-2 or O-3 of a xylosyl residue, at both O-2 and O-3 of a xylosyl residue, and at O-3 of a xylosyl residue substituted at O-2 with glucuronic acid. Acetyltransferases responsible for the regiospecific acetylation of xylan in tree species have not yet been characterized. Here we report the biochemical characterization of twelve Populus trichocarpa DUF231-containing proteins, named PtrXOATs, for their roles in the regiospecific acetylation of xylan. The PtrXOAT genes were found to be differentially expressed in Populus organs and among them, PtrXOAT1, PtrXOAT2, PtrXOAT9 and PtrXOAT10 exhibited the highest level of expression in stems undergoing wood formation. Activity assays of recombinant proteins demonstrated that all twelve PtrXOAT proteins were able to transfer acetyl groups from acetyl CoA onto a xylohexaose acceptor with PtrXOAT1, PtrXOAT2, PtrXOAT3, PtrXOAT11 and PtrXOAT12 having the highest activity. Structural analysis of the PtrXOAT-catalyzed reaction products using 1H NMR spectroscopy revealed that PtrXOAT1, PtrXAOT2 and PtrXOAT3 mediated 2-O- and 3-O-monoacetylation and 2,3-di-O-acetylation of xylosyl residues and PtrXOAT11 and PtrXOAT12 only catalyzed 2-O- and 3-O-monoacetylation of xylosyl residues. Of the twelve PtrXOATs, only PtrXOAT9 and PtrXOAT10 were capable of transferring acetyl groups onto the O-3 position of 2-O-glucuronic acid-substituted xylosyl residues. Furthermore, when expressed in the Arabidopsis eskimo1 mutant, PtrXOAT1, PtrXAOT2 and PtrXOAT3 were able to rescue the defects in xylan acetylation. Together, these results demonstrate that the twelve PtrXOATs are acetyltransferases with different roles in xylan acetylation in P. trichocarpa.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Ruiqin</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Georgia, Athens, GA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Dongtao</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Georgia, Athens, GA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Zheng-Hua</ForeName>
<Initials>ZH</Initials>
<Identifier Source="ORCID">0000-0001-5714-744X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Georgia, Athens, GA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.-</RegistryNumber>
<NameOfSubstance UI="D000123">Acetyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000123" MajorTopicYN="N">Acetyltransferases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29617384</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0194532</ArticleId>
<ArticleId IdType="pii">PONE-D-17-43962</ArticleId>
<ArticleId IdType="pmc">PMC5884507</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2012 Nov;53(11):1934-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23045523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Jan 1;58(1):156-174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28011867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):144-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2003 Mar 28;338(7):597-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Dec 1;58(12 ):2126-2138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29059346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2000 Dec 1;329(4):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(2):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25141999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Feb 11;9(2):e87370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24523868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Jun;50(6):1075-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(14):4119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25750422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Feb;56(2):195-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Mar 04;11:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2008 Feb 4;343(2):256-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jul;54(7):1186-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23659919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 08;11(1):e0146460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26745802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Jun;214(4):1491-1505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28257170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 25;288(4):2605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23209280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Dec;17(12):3390-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16272433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2002 Feb 18;337(4):373-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Nov;23(11):4041-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Jan;57(1):35-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26556650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Nov;50(11):1982-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19789274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jul 10;281(5374):237-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1452-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21908685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2016 Feb;243:120-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26795157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:165-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Mar;7(3):332-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Apr;219-220:42-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24576763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Mar;4(2):331-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2015 Jan 22;8(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25642285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Jul;4(4):730-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21596688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1881-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307900</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Zhong, Ruiqin" sort="Zhong, Ruiqin" uniqKey="Zhong R" first="Ruiqin" last="Zhong">Ruiqin Zhong</name>
</region>
<name sortKey="Cui, Dongtao" sort="Cui, Dongtao" uniqKey="Cui D" first="Dongtao" last="Cui">Dongtao Cui</name>
<name sortKey="Ye, Zheng Hua" sort="Ye, Zheng Hua" uniqKey="Ye Z" first="Zheng-Hua" last="Ye">Zheng-Hua Ye</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001078 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001078 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29617384
   |texte=   A group of Populus trichocarpa DUF231 proteins exhibit differential O-acetyltransferase activities toward xylan.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29617384" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020